中央广播电视大学2002—2003学年度第二学期“开放专科”期末考试
2003年7月 金融、会计学专业统计学原理(A)试题
一、单选题(每小题2分,共12分)
1.对某城市工业企业未安装设备进行普查,总体单位是( )。
A.工业企业全部未安装设备 B.工业企业每一台未安装设备
C.每个工业企业的未安装设备 D.每一个工业企业
2.有一个学生考试成绩为70分,在统计分组中,这个变量值应归入( )。
A.60—70分这一组 B.70—80分这一组
C.60—70或70—80两组都可以 D.作为上限的那一组
3.由反映总体各单位数量特征的标志值汇总得出的指标是( )。
A.总体单位总量 B.总体标志总量
C.质量指标 D.相对指标
4.抽样平均误差是( )。
A.抽样指标的标准差 B.总体参数的标准差
C.样本变量的函数 D.总体变量的函数
5.现象之间的相互关系可以归纳为两种类型,即( )。
A.相关关系和函数关系 B.相关关系和因果关系
C.相关关系和随机关系 D.函数关系和因果关系
6.统计指数按指数化指标的性质不同,可分为( )。
A.总指数和个体指数
B.数量指标指数和质量指标指数
C.平均数指数和平均指标指数
D.综合指数和平均数指数
二、多选题(每小题2分,共8分)
- 影响加权算术平均数的因素有()。
A.各组频率或频数 B.各组标志值的大小
C.各组组距的大小 D.各组组数的多少
E.各组组限的大小
2.抽样推断中,样本容量的多少取决于( )。
A.总体标准差的大小 B.允许误差的大小
C.抽样估计的把握程度 D.总体参数的大小
E.抽样方法和组织形式
3.测定现象之间有无相关关系的方法有( )。
A.对现象做定性分析 B.编制相关表
C.绘制相关图 D.计算相关系数
E.计算估计标准误
4.编制综合指数的原则是( )。
A.质量指标指数以报告期的数量指标作为同度量因素
B.质量指标指数以基期的数量指标作为同度量因素
C.数量指标指数以基期的数量指标作为同度量
D.数量指标指数以基期质量指标作为同度因素
三、填空题(每小题2分,共10分)
1.统计研究运用大量观察法是由于研究对象的 和 所决定的。
2.相对指数的数值有 和 两种表现形式。
3.在重复抽样条件下,抽样平均数的平均误差大小受 和
两个因素的影响。
4.根据相关密切程度的判断标准,0.5<|r|<0.8时称为 ,0.8<|r|<1时称为 。
5.各项环比发展速度的连乘积等于 ,各逐期增长量之和等于
。
四、判断题(每小题1分,共10分)
1.社会经济统计的研究对象是社会经济现象总体的各个方面。( )
2.同一个总体,时期指标值的大小与时期长短成正比,时点指标值的大小与时点间隔成反比。( )
3.某企业生产某种产品的单位成本,计划在上年的基础上降低2%,实际降低了3%,则该企业差一个百分点,没有完成计划任务。( )
4.抽样平均误差总是小于抽样极限误差。( )
5.相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。( )
- 对我国主要粮食作物产区进行调查,以掌握全国主要粮食作物生长的基本情况,这种
调查是重点调查。( )
7.在简单现象总量指标的因素分析中,相对量分析一定要用同度量因素,绝对量分析可以不用同度量因素。( )
8.某年甲、乙两地社会商品零售额之比为1:3,这是一个比例相对指标。( )
9.总指数有两种计算形式,即个体指数和综合指数。( )
10.动态数列是由在不同时间上的一系列统计指标按时间先后顺序排列形成的。( )
五、简答题(每小题5分,共10分)
1.简述品质标志与数量标志的区别。
2.简述变异指标的概念和作用。
六、计算题(每小题10分,共50分)
1.区商业局下属20个零售商店,某月按零售计划完成百分比资料分组如下:
按计划完成百分比分组(%) | 商店个数 | 本月实际零售额(万元) |
90——100
100——110 110——120 |
4
10 6 |
200
1000 800 |
合 计 | 20 | 2000 |
要求:计算该局平均计划完成程度。
2.某学校有2000名学生参加英语等级考试,为了解学生的考试情况,用不重复抽样方法抽取部分学生进行调查,所得资料如下:
考试成绩(分) | 60以下 | 60—70 | 70—80 | 80以上 |
学生人数(人) | 20 | 20 | 45 | 15 |
试以95.45%的可靠性估计该校学生英语等级考试成绩在70分以上的学生所占比重范围。
3.已知:n=6 ∑x=21 ∑y=426 ∑x2=79 ∑y2=30268 ∑xy=1481
要求:(1)计算变量x与变量y间的相关系数;
(2)建立变量y倚变量x变化的直线回归方程。
(要求写出公式和计算过程,结果保留四位小数。)
4.某地区对两种商品的收购量和收购额资料如下:
商品 | 收购额(万元) | 收购量 | ||
基期 | 报告期 | 基期 | 报告期 | |
A
B |
200
50 |
220
70 |
1000
400 |
1050
800 |
试求收购量总指数和收购价格总指数。
- 某地区1984年平均人口数为120万人,1995年人口变动情况如下:
月份 | 1 | 2 | 5 | 9 | 11 | 次年1月 |
月初人数 | 122 | 125 | 132 | 147 | 151 | 157 |
计算:(1)1995年平均人口数。
(2)1984年—1995年该地区人口的平均增长速度。
(要求写出公式和计算过程,结果保留两位小数。)
暂无评论内容