【上面答案为下列试题答案,请核对试题后再购买】
第二次作业
资源合理配置的线性规划法
(一)填空题
1.设 ,并且A=B,则x=______。
2.设 ,则 AT+B=______________。
3.设A= ,则A中元素a23=________。
4.设 ,则AB=_______________。
5.设 ,则BA=_______________。
6.设 ,则BA=_______________。
7.设 ,则ABT=_______________。
*8.若A为3×4矩阵,B为2×5矩阵,其乘积ACTBT有意义,则C为_____矩阵。
(二)单项选择题
1.设 ,则A-1为( )。
(A)
(B)
(C)
(D)
(三)计算题
1.设矩阵 , ,计算:
(1)3A-2B (2) 3AT+B (3) AB-BA
2.设 ,计算BA。
(四)应用题
1. 某物流公司下属企业生产甲、乙两种产品,要用A,B,C三种不同的原料,从工艺资料知道:每生产一件产品甲,需用三种原料分别为1,1,0单位;生产一件产品乙,需用三种原料分别为1,2,1单位。每天原料供应的能力分别为6,8,3单位。又知,销售一件产品甲,企业可得利润3万元;销售一件产品乙,企业可得利润4万元。
试写出能使利润最大的线性规划模型,并用MATLAB软件计算(写出命令语句,再用MATLAB软件运行出结果)。
2. 某物流公司有三种化学产品A1,A2,A3。每公斤产品A1都含B1,B2,B3三种化学成分0.7公斤、0.2公斤和0.1公斤;每公斤产品A2都含B1,B2,B3三种化学成分0.1公斤、0.3公斤和0.6公斤;每公斤产品A3都含B1,B2,B3三种化学成分0.3公斤、0.4公斤和0.3公斤。每公斤产品A1,A2,A3的成本分别是500元、300元和400元。今需要B1成分至少100斤,B2成分至少50斤,B3成分至少80斤。
试列出使总成本最小的线性规划模型。
3. 某物流企业下属家具厂生产桌子和椅子,产品的销路很好。生产每张桌子的利润为12元,每张椅子的利润为10元。生产每张桌子在该厂的装配中心需要10分钟,在精加工中心需要20分钟;生产每张椅子在装配中心需要14分钟,在精加工中心需要12分钟。该厂装配中心一天可利用的时间不超过1000分钟,精加工中心一天可利用的时间不超过880分钟。假设生产桌子和椅子的材料能保证供给。
试写出使企业获得最大利润的线性规划模型,并用MATLAB软件计算(写出命令语句,并用MATLAB软件运行处结果)。
(五)用MATLAB软件计算(写出命令语句,并用MATLAB软件运行)
1.设 ,求:A-1。
2. 解线性方程组:
*(六)用手工计算下列各题
1.设 ,求:(AAT )-1
2. 解线性方程组:
3.解齐次线性方程组:
© 版权声明
分享是一种美德,转载请保留原链接
THE END
文章不错?点个赞呗